Back to Home
RESEARCH REPORT • 2025

From Classical ML to LLMsModel Selection Guide

A comprehensive decision matrix for choosing the right AI model across 18 use cases — from tabular data to multimodal understanding. Navigate XGBoost vs LLMs, when to fine-tune, and production-ready recommendations for 2025.

18 use cases covered
Classical ML vs Deep Learning vs LLMs
Production recommendations
Latest 2025 models included
Model SelectionLLMsDecision Matrix2025 Guide

Complete Model Selection Matrix

Use Case
Classical ML
Deep Learning
Foundation Models (2024-25)
LLM/Multimodal
Best Choice
Tabular Classification
XGBoostLightGBMCatBoost
TabNetFT-Transformer
TabPFN-2.5TabR
TabLLMGPT-5.2Claude Opus 4.5Gemini 3 Pro
TabPFN-2.3 for ≤15K samples/30 features. XGBoost/CatBoost for larger datasets
Tabular Regression
XGBoostLightGBMCatBoost
Neural Networks
TabPFN-2.5TabR
GPT-5.2Claude Opus 4.5Gemini 3 Pro
XGBoost/LightGBM still dominant. TabPFN-2.5 for small data
Time Series Forecasting
ARIMAProphetXGBoost
N-BEATSTemporal CNNs
TisPFN-TS (2025)ChronosTimesFM
GPT-5.2Claude Opus 4.5Gemini 3 Pro
TabPFN-TS for zero-shot. Classical ML + DL ensembles for production
Text Classification
Naive BayesSVM + TF-IDF
BERTRoBERTaDeBERTa-v3
SetFitFlan-T5
GPT-5.2Claude Opus 4.5Gemini 3 Pro
SetFit for few-shot. DeBERTa-v3 with labeled data. GPT-5 for zero-shot
Named Entity Recognition (NER)
CRFBERT-NER
BILSTM-CRFBERT-NER
GLINER (zero-shot entities)
GPT-5.2Claude Opus 4.5Gemini 3 Pro
GLINER for zero-shot. Fine-tuned LLM for complex entities
Image Classification
Random Forest on features
ResNetEfficientNetViT
DINOv2EVA-CLIPConvNeXt-v2
GPT-5.2 (vision)Claude Opus 4.5Gemini 3 Pro
DINOv2 for features. Claude Opus 4.5 for zero-shot + reasoning
Object Detection
HOG + SVM
Faster R-CNNYOLOv8
YOLOv12YOLOv11RT-DETRGrounding DINO
GPT-5.2 (vision)Claude Opus 4.5Gemini 3 Pro
YOLOv12 for speed/accuracy. Grounding DINO for open-vocabulary
Semantic Segmentation
N/A
U-NetDeepLab
SAM-2SegFormerMask2Former
GPT-5.2Claude Opus 4.5Gemini 3 Pro
SAM-2.1 revolutionary for zero-shot segmentation
Speech Recognition
HMM-GMM
Wav2Vec 2.0
Whisper Large V3Whisper TurboCanary Qwen 2.5B
GPT-5.2 (audio)Claude Opus 4.5Gemini 3 Pro
Canary Qwen (5.6% WER SOTA). Whisper V3 for multilingual
Text Embedding
Word2VecSentence-BERT
E5-mistral-7bBGE-M3Nomic-Embed v1.5Jina v3
gemini-embedding-002VoyageCohere Embed v3
OpenAI text-embedding-3Qwen2-Embedding
Open-source: BGE-M3, Qwen2-Embedding. Commercial: Gemini Embedding, Voyage 3
Code Generation
Template-basedCodeBERT
CodeT5
StarCoder 2DeepSeek-CoderQwen2.5-CoderKimi-Dev-72B
GPT-5.2-CodesClaude Opus 4.5Gemini 3 ProGLM-4.6
Claude Opus 4.5 (80.9% SWE-bench). Open-source: Qwen3-Coder, DeepSeek-V3.2
Machine Translation
Statistical MT
TransformersmLLM-200
MADLAD-400MQM-100
GPT-5.2Claude Opus 4.5Gemini 3 Pro
NLLB-200/MADLAD for coverage. GPT-5.2 for quality
Multimodal Understanding
Feature concatenation
CLIPALIGN
LLaVA 1.6CogVLMQwen-VL
Claude Opus 4.5GPT-5.2Gemini 3 Pro
Claude Opus 4.5 best overall. LLaVA 1.6 best open-source
Video Understanding
3D features
C3DI3D
VideoLLaMA2InternVideo2
Gemini 3 Pro (native video)GPT-5.2Claude Opus 4.5
Gemini 3 Pro with native long context. InternVideo2 open-source
Document Understanding
OCR + rules
LayoutLM-v3Donut
NougatKosmos-2.5
Claude Opus 4.5GPT-5.2Gemini 3
Claude Opus 4.5/GPT-5 for complex layouts
Recommendation Systems
NCFMatrix FactorizationSVD
RecFormerSASRecBERT4Rec
Deep & Cross Networks
GPT-5.2Claude Opus 4.5Gemini 3 Pro
Classical/DL hybrids in production. GPT-5.2/Claude for explainable recs
Graph Tasks
PageRankLabel Propagation
GCNGAT
GraphGPSGPS++GraphFormer-v2
GPT-5.2Claude Opus 4.5Gemini 3 Pro
Graph Transformers (GraphGPS) SOTA. GNNs for efficiency
Anomaly Detection
Isolation ForestLOF
AutoencoderVAE
Deep SVDDNeuTraL AD
GPT-5.2Claude Opus 4.5Gemini 3 Pro
Deep learning for high-dimensional. Classical for interpretability

Understanding the Matrix

Classical ML

Traditional algorithms like XGBoost, Random Forest. Best for structured data with clear feature engineering.

Deep Learning

Neural networks trained on large datasets. Good for complex patterns but requires significant data.

Foundation Models

Pre-trained models from 2024-25. Often provide best balance of performance and ease of use.

LLM/Multimodal

Large language models with multimodal capabilities. Best for zero-shot and reasoning tasks.

Best Choice

Our production-tested recommendation based on accuracy, cost, and deployment complexity.

Need help choosing the right model?

Our team has deployed production AI systems across all these use cases. Let us help you make the right choice for your specific requirements.

Schedule a Consultation